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Superposition of noncoaxial vortices in parametric wave mixing
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In this paper we present a comprehensive study of the dynamics of screw phase dislocations under condi-
tions of noncoaxial parametric three-wave mixing in the pump low-depletion regime. Under such conditions
the signal and idler fields couple and so, the fields’ properties change through propagation in the nonlinear
crystal. We present an analytical model and a comprehensive study of the vortical features of the resulting field.
The model is compared with the numerical solutions of the full equations. It is shown that by changing the
relative amplitude and phase of the initial fields, one can control the domains where creation and annihilation
of vortex-antivortex twins lead to different vortex content. We show that the effects studied here are relevant
to a variety of physical systems. In particular, we show that the same phenomena are expected to occur in
gyrotropic media and photonic crystals.
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I. INTRODUCTION

Since screw dislocations were first discussed in gen
wave fronts@1#, the study of these structures has grown
become a field of its own: singular optics@2–6#. Optical
screw dislocations, also called optical vortices, are singul
ties in the wave front of an optical field, where the amplitu
vanishes and the phase twists around the singularity ta
all possible values. The number of twists of the pha
modulo 2p is called the topological charge of the vorte
which can be either positive or negative depending on
direction of the twist. Vortices appear spontaneously in s
eral settings, and otherwise they can be generated with p
masks@7,8#, or with astigmatic optical components@9#.

In this context, parametric mixing of multiple waves co
taining wave front dislocations in quadratic nonlinear me
constitutes a fascinating scenario. Because of the param
interaction, the waves exchange not only energy with e
other but also nonlinear phase shifts, hence wave fronts.
dislocations can be transformed from one frequency to
other. In particular, they can be converted to the second
monic @10–14# and to the sum frequency wave@15#. In all
cases studied to date, the pump beams contained coaxia
tices. Thus, the investigation of the superposition of non
axial vortices in parametrically coupled waves remains op

Actually, even the linear superposition of coaxial@16# and
noncoaxial@17# vortical fields exhibits much richer prope
ties than one may naively expect. The important result
both cases is that superposition of the singular beams
generate additional vortices relative to the vortex conten
the initial fields. The relative amplitude and phase differen
and the axes separation, was found to dictate the number
position of new dislocations.

*Electronic address: aps@nls.phys.msu.su
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In this paper we investigate the features of the interact
of noncoaxial waves propagating in a weakly nonlinear q
dratic crystal. This problem belongs to the broad topic
‘‘interaction of coupled waves,’’ and thus the results fou
here are expected to be relevant to a variety of other me
For example, the coupling of the waves may be origina
due to parametric three-wave interaction, gyrotropy betw
orthogonal components of an electric field in dielectrics or
a magnetic field in ferrites, or as a result of a Bragg re
nance in periodically inhomogeneous media as in, for
ample, photonic crystals. In all such cases, the waves
coupled and thus follow equations similar to those stud
here.

As already mentioned for the three-wave mixing case
the presence of coupling the waves interchange power
phase, and as a result, each wave consists of the sum o
original vortex and the one transferred from other comp
nent. Their superposition generates dislocations with dif
ent charges, symmetries, and locations. In this paper
present a detailed analytical and numerical study of s
superposition, and discuss the different existing possibili
to control the output light pattern.

The remaining of the paper is organized as follows.
Sec. II we present the equations and geometries we are g
to use in our study. We also show explicitly the similariti
between the case of three-wave mixing and gyrotropic me
or photonic crystals. In Sec. III we provide a solution of t
equations and show that it takes the shape of a superpos
of noncoaxial beams. In Sec. IV we perform a compreh
sive study of such solution from a general point of view. W
mainly consider here the superposition of initially equa
charged~plus-plus! single vortices separated from each oth
but also present some results for the case of oppos
charged~plus-minus! singularities. In the plus-plus case on
three singularities settle at a circle, the radius and the ce
of which depend on the phases and the amplitudes of b
initial vortices. Plus-minus superposition gives hyperbo
©2002 The American Physical Society08-1
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SUKHORUKOV, KALINOVICH, MOLINA-TERRIZA, AND TORNER PHYSICAL REVIEW E66, 036608 ~2002!
for two-four vortices disposition. Finally, in Sec. V we us
all the acquired knowledge to understand the evolution
two separated vortices and a low-frequency pump in a th
wave interaction. As amplitudes and phases vary depen
on the distance of propagation, all stages of superposi
peculiar to a linear interference of shifted dislocations
consistently studied. Therefore we investigate dependen
of the number and location of generated vortices on
propagation distance. The spatial dynamics of disloca
production and disappearance at difference frequency is
sented. The analytical theory and numerical simulation
developed to study coupled vortex interplay. Both a
proaches give identical results in the case of weak diffr
tion.

II. VORTEX INTERACTION IN COUPLED WAVES

A. Parametric three-wave mixing

We consider propagation of optical beams with the car
frequenciesv j in lossless quadratically nonlinear media.
this case only the frequenciesv1 , v2, andv35v11v2 are
considered and generation of other harmonics can be
glected. The total electric field is expressed as

E5
1

2 (
j 51

3

ejAj~x,y,z!ei (v j t2kjz)1c.c., ~1!

whereAj are the complex amplitudes,z is the propagation
distance,x andy are the coordinates in the transverse pla
ej are the unit polarization vectors, andkj are the wave num-
bers. If the nonlinear interaction is weak, then the beam
plitudes vary slowly, and their evolution can be described
the set of coupled nonlinear equations@18#,

]A1

]z
1 iD 1D'A152 ig1A3A2* eiDkz, ~2!

]A2

]z
1 iD 2D'A252 ig2A3A1* eiDkz, ~3!

]A3

]z
1 iD 3D'A352 ig3A1A2e2 iDkz, ~4!

where D j5(2kj )
21 is the diffraction coefficient, g j

52pe1x̂ (2)e2e3v j /(cnj ) is the nonlinear coefficient,x̂ (2) is
the quadratic nonlinear susceptibility tensor,nj is the linear
refractive coefficient, andc is the speed of light,Dk5k1
1k22k3 is the wave vector mismatch. Equations.~2!–~4!
can also describe type II second-harmonic generation~SHG!,
if v15v25v is the fundamental frequency~FF!, A1 andA2
are the amplitudes of the ordinary and extraordinary po
ized FF components, respectively, andA3 is the amplitude of
extraordinary second harmonic component.

Let us now consider the evolution of Gaussian bea
with nested vortices which are incident on the boundary
the nonlinear crystal,

Aj~x,y,0!5EjVj~x,y!eiw j 0 ~5!
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where

Vj5@x2xj1 isgn~mj !y# umj ue2[(x2xj )
21y2]/wj

2
, ~6!

xj is the coordinate of zero field singularity,mj is the vortex
charge,wj is the beam width, andEj , w j 0 are the initial
amplitude and phase of the fields, respectively.

In the following we consider parametric interaction b
tween the vortices nested in the sum-frequencyv3 and
difference-frequencyv2 components in the presence of
highintensity, undepleted pump wave with frequencyv1. We
have performed direct numerical simulations of Eqs.~2!–~4!
with the initial conditions Eq.~5! and Eq.~6!.

The variables and parameters appearing in the mo
equations can be normalized as follows:D jn5L/(2kjw0

2),
g jn5g jE0L, Ajn5Aj /E0 , xn5x/w0 , yn5y/w0 , zn5z/L,
Dkn5DkL. HereE0 andw0 are the characteristic amplitud
and beam width, respectively,L is the characteristic scale o
the propagation distance. Only dimensionless normali
units are used in the remainder of the paper, and hereafte
omit the ‘‘n’’ subscript in order to simplify the notation.

All the examples presented in the paper were calcula
for the following parameter values:g150.4, g250.6, g3
51, D150.025, D250.017, D350.01, E151, E25E3
50.1, w15100, w25w351, m150, m25m351. By nu-
merical simulation, the intensity and phase distributions o
the beam cross section were obtained as a function of
propagation coordinatez for different initial phases, ampli-
tudes, and beam separation.

Typical snapshots of the difference-frequency beam tha
obtained are shown in Fig. 1. The intensity distributions
given in the left column, where the larger intensity corr
sponds to the darker regions. Therefore the vortices appe
bright spot nested in the beam. In the right column we sh
the corresponding interferograms of the beams with a til
plane wave, where the vortices appear as a character
fork. When the fork tines point downwards, we consider t
vortex to carry a positive topological charge, thus when
fork points upwards the vortex carries a negative topolog
charge. One observes in the plot that, because of the p
metric generation, either one or three vortices appear in
beam, as the propagation distance increases. We note th
the vortices move along a circle, whose diameter is equa
the separation between the beam centers. We elaborate
on this property below, and present an illustration in Fig.
This case corresponds to a representative, but particular
come of the wave evolution.

To perform a comprehensive analysis of the general v
tex evolution under conditions of undepleted pump, one
our main goals here is to elaborate an approximate analy
theory of the evolution of coupled vortices under appro
mate, but general simplifications of Eqs.~2!–~4!. First, we
neglect the effect of diffraction for wide beams.

Second, we note that in the limit of ideal plane waves
at the medium boundary the pump amplitudeE1 is much
larger than the amplitudes of the other waves, i.e.,E1
@E2,3, then this amplitude relation is preserved at arbitra
distances in the nonlinear medium as follows from t
Manley-Rowe relations@19#. For finite, unfocused beams th
same conclusion holds in integral form~i.e., for the powers
8-2
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SUPERPOSITION OF NONCOAXIAL VORTICES IN . . . PHYSICAL REVIEW E66, 036608 ~2002!
carried by each wave!. Therefore, in this case the self-actio
of pump wave is weak and the effect of the nonlinear term
Eq. ~2! can be neglected, that is, we can perform analyt
analysis using the undepleted pump approximation. Th
interaction of vortices is described by the coupled equatio
~3! and~4!, where parametrical coupling depends on the a
plitude of the pump waveA1(x,y,z).

In order to reveal the features appearing due to the su
position of vortices in the sum-frequency (v3) and
difference-frequency (v2) waves, we consider the pum
beam without dislocations,m150. To obtain analytical re-
sults, we also assume that the beam width is large so tha
variations of the transverse profile in the pump wave can

FIG. 1. The intensity distribution~left! and interferogram~right!
of the difference-frequency beam are shown at different valuesz
under parametric interaction between nonaxial beams nested
equally charged (11) dislocations. The snapshots were obtained
numerical simulation forx050.7, andw j 050. They show the main
stages of coupled vortices dynamics~from top to bottom as the
propagation distance increases!:~row 1! the input beam,~row 2!
buildup of two new dislocations,~row 3! three symmetric singulari-
ties, ~row 4! vortex-pair collision, and~row 5! vortex switching to
specular position. The detailed evolution of the vortex coordina
is shown in Fig. 7~b!.
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neglected, so thatV1.1 andA1.A1(x,y,0).const. In par-
ticular, the analytical theory enables us to construct the
mains for one-three and two-four vortices in the parame
plane defined by the amplitude ratio and the phase dif
ence. We will also present later a comparison between
analytical model and the actual numerical results.

B. Vortices in gyrotropic media and spatial uniform coupling

We note that Eqs.~3! and ~4! can also describe propaga
tion of wave beams in photonic crystals, and gyrotropic m
dia. In this case the amplitudesA2 andA3 correspond to the
components of the monochromatic wave (v25v35v),
g2A1* 5g3A15g is the spatially homogeneous coupling c
efficient, Dk50, andD25D35D. Therefore, many of the
effects predicted for parametrically coupled vortices in fie
of intense low-frequency pump with the plane-wave tra
verse profile can also be observed with vortex excitations
magneto-optic and periodically inhomogeneous media.

Recall that the normal waves in gyrotropic media m
have left or right circular polarizations@20#. These waves can
be represented as a superposition of two linearly polari

ith
y

s

FIG. 2. Location of points in the transverse plane where vorti
appear due to superposition of input plus-plus~a! and plus-minus
~b! screw dislocations for different values of phase differencew.
The circles ~a! correspond tow5p/2 ~solid curve!, p/4 ~dash-
dotted curve!, and 0.45~dashed curve!. The hyperboles~b! are to
w560.045 ~solid curve!, 60.45 ~dashed curve!, and p/2 ~dash-
dotted curve!.
8-3
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SUKHORUKOV, KALINOVICH, MOLINA-TERRIZA, AND TORNER PHYSICAL REVIEW E66, 036608 ~2002!
components with the relative phase shiftp/2 or 2p/2, re-
spectively, i.e., we have

A65A26A3 . ~7!

In order to derive the governing equation for the amplitud
of the normal modes, we substitute Eq.~7! into Eqs.~3! and
~4! taking into account restrictions on the parameter val
outlined in the beginning of this subsection, and finally o
tain the following equations:

]A6

]z
1 iDD'A657 igA6. ~8!

Since Eqs.~8! for the two normal mode amplitudes are n
coupled, the corresponding solutions can be found indep
dently, and then according to Eq.~7! solution in the original
variables isA25(A11A2)/2 andA35(A12A2)/2. We see
that in a gyrotropic medium vortex transforms from one l
early polarized component to the other one with orthogo
polarization, and vice versa. Therefore, one can observe
namical transformation of vortices along the propagation
rection.

III. ANALYTICAL SOLUTION IN THE WEAK
DIFFRACTION LIMIT

We start with the investigation of the beam dynamics
propagation distances smaller than the diffraction length
all the interacting wavesl d j5kjwj

2/2, i.e., forD jz!1. Then,
the model equations~3! and~4! can be further simplified by
removing the diffraction terms, and we finally obtain

]A2

]z
52 ig2A3A10* eiDkz,

~9!
]A3

]z
52 ig3A2A10e

2 iDkz.

We find that Eqs.~9! with the boundary conditions~5! have
exact analytical solutions for the amplitude of the differen
frequency wave,

A25FA20cos~Gz!2 i
DkA2012g2A30A10*

2G
sin~Gz!GeiDkz/2.

~10!

HereAj 05Aj (x,y,0) is the input amplitude profile@see Eq.
~5!#, G5@g2g3E1

21(Dk/2)2#1/25p/Lp , where we intro-
duced the spatial parametric beating lengthLp .

The expression for the amplitude profile of the su
frequency wave can be obtained by exchanging the ind
2↔3, and inverting signs in front ofDk, and removing the
conjugation mark of pump wave amplitude asA10* →A10 in
Eq. ~10!.

According to Eq.~6!, both A2 andA3 contain vortices at
the input face of the crystal. Due to the parametric wa
mixing taking place inside the nonlinear medium, these v
tices penetrate to other components as it follows from
~10!. The field in both components is found as a linear
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perposition of vortices. This kind of field was studied in
previous work@17#, and it was found that the topologica
content of the field may change depending on the rela
amplitude and separation distance of the overlapping fie
In the case of parametrical coupling the ratio of the genera
and host beam amplitudes,bc , varies along the propagatio
distance, and then we expect a rich topological dynamic
occur. In order to determine the positions of new vortex d
locations, we should find zeros of the amplitude profile giv
by Eq. ~10!. Then, we conclude that the vortex coordinat
satisfy the following transcendental equation

V2~x2x0 ,y!1bc~z!V3~x1x0 ,y!50, ~11!

where bc5beiw is a complex value of amplitude ratio
Equation~10! gives

bc5
2 ig2E1E3exp~ iw0!sin~Gz!

GE2@cos~Gz!2 i ~Dk/2G!sin~Gz!#
, ~12!

wherew05w302w102w20 is the initial phase difference. We
assume, with no lack of generality, thatx252x35x0.0,
since the pump wave does not contain a vortex.

IV. GENERIC SUPERPOSITION OF NONCOAXIAL
COHERENT VORTICES

In this section, we discuss the general properties of vo
ces, which appear due to superposition of two noncoa
Gaussian beams. We consider two cases, when the be
have their own dislocations with either equal or oppos
topological charges. First, the general Eqs.~6! and ~11! are
used to find analytical expressions for the vortex coordina
It is clear that the number of solutions of these equatio
defines the number of generated vortices. Moreover, emp
ing Eq. ~6!, we establish a simple rule for determining th
topological charges of the appearing dislocations. We p
domains in the parameter space amplitude versus phase
ference, corresponding to different numbers of dislocatio
for various separations between the centers of input bea
Then, we consider examples of vortex dynamics as the
plitudes and phases of superimposed beams changes d
wave mixing.

A. Number of generated vortices, their positions,
and topological charges

First of all we consider the case of single charge, eq
vortices at the input,m25m351. Then, we substitute the
amplitude profiles given by Eq.~6! into Eq. ~11!, and derive
the following algebraic equation for the coordinates of vo
tex centers:

~x2x01 iy !e2xx01bc~x1x01 iy !e22xx050. ~13!

Separating the real and imaginary parts in Eq.~13!, we
obtain

x coshG1x cosw5x0sinhG, G54xx02 ln b, ~14!

x21~y2x0cotw!25x0
2sin22w. ~15!
8-4
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Note that Eqs.~14! and ~15! are simplified tox5x0tanhG,
x21y25x0

2 for cosw50, x5x0tanh(G/2), y50 for cosw
51, and x5x0coth(G/2), y50 for cosw521. Equation
~15!, in particular, proves at once thatx coordinates of aris-
ing vortices are limited by valuex0 /usinwu. According to Eq.
~15!, the dislocations appear on a circle with the rad
x0 /usinwu, and with the center in a point (0,x0cot w), as
shown in Fig. 2. The circle always passes through ini
points (x0 ,0) and (2x0 ,0). In thecase ofp/2, the circle
center is located at the origin, see the solid curve in Fig. 2~a!.
The corresponding dynamical transformations of vortices
shown in Fig. 1. The circle moves upwards, and the rad
becomes larger asw increases. It degenerates to straight lin
y50 andy→` when cosw521.

Thus the generated vortices are placed on the circle a
beam cross section. There are one or three vortices dep
ing on the beam distancex0, the amplitude ratiob, and the
phase differencew. We can find the boundary of the thre
vortex domain in the following way. Such domain is plac
between the vertical tangents to the curvex5x(b). To de-
termine their positions, it needs differentiating Eq.~14! with
respect tox. The obtained expression must be solved join
with Eqs. ~14!. Having fulfilled such procedure and carrie
out simple algebraic transformation, we find the followin
equations for curves that define the three-vortex domain

bb5exp~4xbx0!S 4xb
224xbx011

4xb
214xbx011

D 1/2

, ~16!

coswb5
4x0

224xb
221

@~114xb
2!2216xb

2x0
2#1/2

. ~17!

The three-vortex domains constructed by Eqs.~16! and
~17! are shown in Fig. 3 for different beam separationx0.
The domain has the extreme point of a cusp type at

coswex54x0
221 ~18!

FIG. 3. Domains of three vortices generated by coupled p
plus screw dislocations for the original displacementsx050.5 ~dark
gray!, 1/A2 ~gray!, 1 ~crosshatched!.
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and lays in the straight lineb51. Only one positive vortex
exists outside the domain. In the domain topological char
of three vortices alternate as plus, minus, and plus. Inter
ingly, the vortex characteristics withb are the same as with
1/b when a phase difference is fixed.

B. Dependence of vortex positions on the amplitude-phase
relations

Let us now consider representative examples of vor
superposition while the amplitude ratio changes, see Fig
~left column!. The two limiting cases, whenb approaches
zero and whenb goes to infinity, correspond to the cas
when only one of the two overlapping fields is present in
total field. One expects in those cases only one vortex to
present in the field, and its location should be that of
corresponding beam, either (x0,0) or (2x0,0). As an ex-
ample we have chosen beams separated on the distanx0
50.45 at which the extreme point of the domain is coswex
520.19.

We start our analysis with the critical casew5wex . Here,
as mentioned above, only a single vortex exist for the wh
range of amplitudes, but its position changes while chang
the relative amplitudes. It is in this range that the singula
ties switched from initial position (x0 ,0) to opposite point
(2x0,0) under the monotonic amplitude ratio increase,

-

FIG. 4. Vortex coordinatesx ~solid curves!, y ~dashed curves! as
a function of the amplitude ratiob for x050.45 ~left column! and
of the phase differencew for x051/A2 ~right column! in case of
plus-plus interaction. The parameter cosw520.19 ~a!, 20.9 ~b!,
21 ~c!, and b52 ~d!, 1.1 ~e!, 1 ~f!. The plots are obtained by
analytical solution of Eqs.~16! and ~17!.
8-5
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shown in Fig. 4~a!. The vortex moves on a circular arc, an
the maximum remoteness alongy axis is ym5x0tan(w/2)
51.21x050.545 atx50.

When the relative phase is such that its cosine is less
the extreme value cosw,coswex, three vortices can arise
We consider more particularly the case of cosw520.9, see
Fig. 4~b!. The three-vortex region begins atbb251/bb
50.23 and ends atbb15bb54.25.

The initial vortex is displaced away from the origin alon
both axes while increasing the relative amplitude. It reac
the farthest positionxm151.03 atbm54.25. A vortex twin is
created at the pointxm252xm1 whenb5bb2. The positive
vortex of the twin moves towards the position (2x0 ,0)
which corresponds with the center of one of the origin
fields,V3. Its negative counterpart moves to collide with t
initial vortex. They annihilate each other atb5bb1, leaving
only a single vortex in the field. One can see that the wh
process is symmetric when one changesb to 1/b.

The case cosw521 is degenerate. Here, only two pos
tive vortices appear for the whole range ofb, but at the
boundary pointsb50 andb→` where, as only one field
contributes to the sum, only one vortex is present. The n
positive vortex enters in the total field from afar. The neg
tive vortex goes to infinity alongy axis. A representative
example is shown in Fig. 4~c!.

We have also studied how the vortex positions cha
with relative phase variations, when the amplitude is fix
In Figs. 4~d–f! we present some representative cases, wh
the separation distance is fixed tox051/A2, which is the
critical distance, thus regions with three vortices will appe
at any amplitude ratio. As can be seen from Fig. 3, whenb
51 the three vortices region covers the whole phase dom
as shown in Fig. 4~f!. The larger the departure of the amp
tude from unity, the smaller is the three vortices region.

Investigation of beam separation influence on plus-p
vortex superposition was performed theoretically and exp
mentally in Ref.@17#. Thus we omit such discussion.

C. Superposition of vortices with opposite topological charges

Similar features appear for superpositions of vortices w
different charges, although the actual dynamics and num
of vortices change from case to case. Because of this,
have also studied the superposition where the vortices of
overlapping fields have opposite charges:m251,m3521.
In this case only two or four vortices can appear. In Fig. 5
present the domains in the parameter space where four
tices appear. Only two vortices can be found outside
domains. Analytical expressions for this case can also
found and, for example, the parametric equations for
boundary between the domains are

bb5exp~4xbx0!S 4x0
224xbx021

4x0
214xbx021

D 1/2

, ~19!

coswb5
4x0

224xb
221

@~114x0
2!2216xb

2x0
2!] 1/2

. ~20!
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The extreme points of the domain are located in

coswex5~4x0
221!1/2/~2x0

2!, ~21!

and if the beam separation is less than the critical valuexcr

51/A2, the four-vortex domains disappear. Within such d
mains the topological charge alternates as plus, minus, p
minus from one vortex to another.

The equations which govern the position of the vortic
are

x0coshG1x0cosw5x sinhG, G54xx02 ln b, ~22!

y212xy cotw2x21x0
250 ~23!

and some representative cases are shown in Fig. 6.
We emphasize that one of two positive vortices goes ty

infinity when cosw51, see Figs. 6~c,e!. In that case Eqs.~22!
and~23! becomex5x0tanh(G/2), y50 for remaining vorti-
ces.

V. SPATIAL DYNAMICAL EVOLUTION OF COUPLED
VORTICES

In this section we focus on the case of equal vortices
their propagation in nonlinear quadratic media. We anal
the dynamics of the vortices in the difference-frequen
componentA2, when the initial fieldsA2 and A3 contain
vortices of the same signm25m351. We will use the ana-
lytical results obtained in Sec. III in two distinct cases:~i!
exact phase matchingDk50 and~ii ! large phase mismatch
uDku@G0. The first case also corresponds to vortex exc
tions in gyrotropic medium~see Sec. II B!.

In our analytical development, we have neglected the
fect of beam diffraction. In order to determine the evoluti
under weak diffraction, and its influence on our results,
have performed direct numerical simulations of Eqs.~2! and
~4! with the boundary conditions Eq.~5! and Eq.~6!. A com-
parison between analytical and numerical simulation res
is given below.

FIG. 5. Domains of four vortices generated by plus-minus scr
dislocations for the original displacementsx050.9 ~dark gray fill-
ing!, 1.0 ~gray filling!.
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A. Vortex mixing at phase matching

According to the analytical solution~12! obtained in the
nondiffraction limit @model Eqs.~9!#, the phase difference
between the second and third components does not chan
the case of phase matchingDk50, and remains the same a
at the input. Then, using Eq.~12! we can obtain simplified
expressions of the amplitude ratio and phase difference
the generated and host beams,

b5bmutan~G0z!u, cosw5sgn@ tan~G0z!#sinw0 , ~24!

where bm5(g2 /g3)1/2E3 /E2. As will be shown explicitly
for the case of phase mismatched waves, these kind of e
tions define a curve in the phase space@b,cos(f)#. The
crossings of this curve with the boundaries of the domain
Fig. 3 are the points where creation or annihilation of vo
ces occur. From Eq.~24! it is seen that the host amplitud
vanishes at half the beating lengthLp5p/(2G0). Note that
b goes through all possible values while changing the pro
gation distance inside the crystal. According to Eq.~24! the
phase difference jumps byp occur because of changing sig
of tan(G0z).

We first study parametric mixing of dislocations whe
w050 , so that cosw(0)50, see Eq.~24!. In this case the
vortices are situated at the circlex21y25x0

2, Eq. ~14!. If
original vortices are less than a critical distance apart, wh
is xcr51/A2 for this particular case, only a single dislocatio

FIG. 6. Vortex coordinatesx ~solid curves!, y ~dashed curves! vs
the amplitude ratiob ~left column!, and the phase difference~right
column! for supercritical initial separationx051 of plus-minus
screw dislocations. The parameter cosw50.866~a!, 0.98~b!, 1 ~c!,
and b51 ~d!, 2.5 ~e!, 3 ~f!. The plots are obtained by analytica
solution of Eq.~22!.
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is formed, see Fig. 7~a! where we have usedx050.45. In this
case, the vortex goes from (x0 ,0) to (2x0 ,0) passing
through the point (0,0), whereb51, at the lengthz0

5G0
21tan21(1/bm)50.25Lp and reaches opposite sidex05

20.45 at the distancezp50.5Lp , where the energies of th
A2 andA3 beams are exchanged. After this cycle the simi
process is repeated in contrary transverse direction. The
merical simulations are in good agreement with the resul
our analytical model.

When the beam separation is larger than the critical d
tance three vortices can be generated. In Fig. 7~b! we show a
typical example forw050 and x050.7.0.5. We observe
that, besides the original vortex, a new twin of vortices
created at aboutzb1.0.2Lp . One of them collides with the
original vortex, annihilating each other atzb2

5G0
21cot21(bm/bb).0.38Lp . The remaining positive

charged vortex moves towards the position (2x0,0). It
reaches that position when the exchange of energy is c
plete. After that point the process in Fig. 7 repeats its
Characteristic examples of direct numerical simulations
presented in Fig. 1. These plots demonstrate that the am
tude and phase profiles can be used to determine the vo
positions, and determine the topological charges of dislo
tions. Results of such numerical calculations are plotted w
solid curves in Fig. 7.

The dynamics of the vortices is modified if we use oth
initial phase mismatches. For instance, introducingw05
2p/3, and hence cosw(0)520.5 the symmetric trajectory
of parametric vortex is distorted as it is shown in Fig. 7~c!.
the asymmetry results from the phase difference jump byp
at z5p/(2G)50.5Lp according to Eq.~24!. Here we have
kept all the other parameters used for the simulation ident
to those in Fig. 7~a!.

FIG. 7. Dependence of difference-frequency vortex coordinax
on the propagation distancez under phase matching. The paramet
superposition occurs between two beams withbm51, and~a! x0

50.45, w050; ~b! x050.7, w050; ~c! x050.45, w052p/3; and
~d! x050.45,w052p/2. Solid line is the result of numerical simu
lation, dashed line is the analytical solution of Eqs.~14! and ~24!.
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B. Effects of weak diffraction

There is a large change in the pattern when we
cosw(0)521, see Fig. 7~d!. If we tune the initial phase to be
w052p/2 we expect to achieve the desired conditions.
deed, initially we see only two trajectories, which correspo
to two branches in Fig. 4~e!. However, at a larger distance
z.0.4Lp , the third vortex appears in between the first tw
This happens due to thediffraction-induced phase mismatch.
Let us study these effects in more detail. The parameters
wave beam are modified as a result of diffraction. In t
linear diffraction regime, the beam width increase is prop
tional to the factorf 5(11z2/Ld j

2 )1/2, the phase front be
comes curved, where the curvature radius isR5z1Ld j

2 /z,
and the phase shift is accumulated at the beam axis,wd
5cot21(z/Ldj). At small propagation distances,z!Ld j , the
additional phase, which is accumulated due to diffraction
proportional to the distance, i.e.,wd.z/Ld j . Such a linear
increase of phase corresponds to an effective increase o
beam phase velocity, and the decrease of the wave num
by

Dkd j.21/Ld j524D j /wj
2 . ~25!

The three-wave interaction is primarily influenced by t
presence of the diffraction-induced wave number misma
Dkd5Dkd11Dkd22Dkd3, which can be presented, usin
Eq. ~25!, in the following form:

Dkd54~D3 /w3
22D2 /w2

22D1 /w1
2!. ~26!

Small variations of beam width and the curvature of t
phase front can be neglected, provided that the conditioz
!Ld j is satisfied. Then, the leading order correction to
wave number mismatch is given by Eq.~26!.

For the case of Fig. 7~d!, the diffraction-induced mis-
match isDkd.20.11/Lp . As we have already mentioned
the case with cosw521 is a degenerate one, and even su
a small perturbation will change the expected two-vortex
gime. Instead, we have the usual one- and three-vortex
mains. The vortex with negative sign appears in the simu
tion window atz.0.4Lp , and annihilates with the origina
vortex atz.0.5Lp .

Note that, if initial dislocations are not in phase, th
move in a spiral, which is projected in a circle at beam cr
section according to Eq.~15!.

C. Vortex mixing under phase mismatch

Under the presence of a phase mismatch between
parametrically coupled waves (DkÞ0), the phase difference
between the superimposed vorticesw varies along the propa
gation distance as follows from Eq.~12!. Then, the spatia
dynamics of vortices becomes more complicated compa
to the case of exact phase matching considered earlier in
V A. If the phase mismatch is large,uDku@G0, then Eq.~12!
can be simplified and we obtain the relations

b~z!5bmmusin~Dkz/2!u, ~27!

cosw~z!5sgn@sin~Dkz/2!#sin~w01Dkz/2!,
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where bmm5(2g2E1 /uDku)(E3 /E2) is the maximum
achievable amplitude ratio along the propagation distancz.
It follows from Eq. ~27! that the relative amplitude betwee
the superimposed vortices oscillates along the propaga
distance with the spatial periodLp52p/uDku, and phase dif-
ference experiences the jump byp in each spatial period
Strong penetration of the guest beam is observed ifbmm is
large, and this regime can be realized by increasing the
plitude of the third waveE3. We note, however, that thes
results are obtained in the frames of the undepleted pu
approximation, which is valid if the conditionE3!E1 is sat-
isfied.

In order to determine the positions of the generated v
tices, we substitute Eq.~27! into the general expression Eq
~14!, and obtain the following relation between the vort
coordinatesx and the propagation distancez,

tan~Dkz/2!5
~x2x0!exp~4xx0!

2bmmxsinw06@bmm
2 x0

22F2#1/2
, ~28!

F5~x02x!exp 4xx01bmmx cosw0 .

In Fig. 8 we present the analytical calculations of t
vortex coordinates while the propagation distance increa
If w05p ~upper row! a single vortex appears in the firs
steps of propagation. This host vortex moves away from
central region to the beam periphery. At larger propagat

FIG. 8. Dependence of difference-frequency vortex coordinax
on the normalized propagation distanceDkz/2p whenx050.7. Up-
per row, w05p; middle row, w052p/2, and bottom row,w0

50. Left column,bmm51 and right column,bmm52. Other pa-
rameters are given in the beginning of Sec. V.
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distance the phase differencew continues to increase, an
three singularities appear. Then, the process goes in th
verse direction. If the coefficientbmm is increased, the three
dislocation domain becomes larger along thez axis, compare
Fig. 8~b! with Fig. 8~a!.

We now consider an interesting case,w052p/2 when
w(0)5p and the appropriate examples are presented in
middle row of Fig. 8. Near an input three vortices are e
cited: one in the central region, and two more at the be
periphery. Under amplitude balance conditionbmm51, these
two vortices move towards the central region, then me
and disappear, see Fig. 8~c!. However, if bmm is large, the
middle vortex moves towards the host one, and they fuse
disappear, as shown in Fig. 8~d!.

The out-of-phase beams (w050) can excite one or thre
dislocations, see bottom row in Fig. 8. At amplitude balan
bmm51 one vortex appears, see Fig. 8~e!. It is attracted to-
wards the beam which penetrates from the sum-freque
component. However, ifbmm is large, then three vortices ca
be excited, Fig. 8~f!. In two last cases vortex reaches extrem
position at the distancez5Lp/2, and then returns to th
original position.

D. Vortex trajectories on the amplitude versus phase
parameter plane

The coordinates of generated vortices change in the
cess of wave mixing, due to the changes of amplitudes
phases during the beam propagation, as we have illustr
in Sec. V C. If one want to determine just the number
generated vortices, then this can be predicted more easil
analyzing the result of wave mixing in the parameter pla
(b,cosf). We have demonstrated earlier that these par
eters uniquely determine the number of vortices, for a fix
distance between the input beams, as illustrated in Fig
However, Eqs.~27! give the following relation between thes
parameters for three-wave interaction under phase misma
ing

cosw5
b cosw0

bmm
1sgn@sin~Dkz!#sinw0F12

b2

bmm
2 G 1/2

,

~29!

which describes a line in Fig. 3. If such a line crosses
shaded domain, three dislocations are generated at some
tances.

Let us illustrate the results for the beam separation par
eter x050.7. In Fig. 9, we plot the corresponding thre
soliton domain from Fig. 3, and also draw characteristic t
jectories defined by Eq.~29!. These curves correspond to th
different values of mismatches, which we choose to be
same as in Figs. 8~a–f!. Full coincidence between the fu
and simplified descriptions is evident. For example, the
jectory ~e! for w050 does not cross the three-vortex doma
in Fig. 9, and we see only one vortex generation in Fig. 8~e!.
If an energy exchange is increased up tobmm52, the corre-
sponding trajectory~f! crosses this domain, and there a
regions of three-vortex generation in Fig. 8~f!. If the initial
phase difference becomes equal to2p/2, then the trajecto-
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ries in Fig. 9 always cross the three-vortex domain. T
larger the amplitude ratiobmm, the longer is the distance
where three vortices exist, cf. the cases~c! and~d!. To sum-
marize, the trajectories plotted on a parametric plane in F
3 enable us to quickly reveal the qualitative dynamics
three-wave vortex generation.

The trajectories defined by Eq.~29! can be superimpose
in a similar way over the four-vortex domains, shown in F
5 for the case of oppositely charged input beams. In this c
the number of vortices will change from two to four~or the
other way around!, as the domain border is crossed.

VI. CONCLUSIONS

We have reported a detailed study of the mixing of no
coaxial vortices in parametric wave coupling. Our results
applicable to the cases of~i! three-wave parametric interac
tions in quadratic media,~ii ! coupling of orthogonally polar-
ized components in the gyrotropic media, and~iii ! wave
propagation in photonic crystals under Bragg-resonance c
ditions. In all such cases, each wave carries its own vo
and the one that is transferred from the other compone
The noncoaxial superposition of the singularities gives r
to the appearance of new dislocations with different charg
symmetries, and spatial positions.

We have performed extensive numerical simulations t
ing into account all the key factors, which govern the int
action of wave beams. Several example illustrate amplit
and phase distributions in the beam cross sections, w
were used to determine coordinates and charges of the
erated vortices, under different conditions. However, for u
form coupling and negligible diffraction, we have develop
an analytical description. The corresponding solution was
plied to analyze vortex generation by the separated bea
containing screw phase dislocations with plus-plus and p
minus topological charges. The equations for the genera
vortex coordinates have been obtained.

It has been shown how the number and coordinates of

FIG. 9. Vortex trajectories in the parameter plane (b,cosw) un-
der phase-mismatched interaction of equally charged vort
nested in noncoaxial beams with the separationx050.7. The mo-
tion along the lines~a–f! corresponds to the changes of vorte
coordinates shown in Figs. 8~a!–8~f!. Three vortices appear whe
the parametric trajectory enters the gray shaded region, which
earlier shown in Fig. 3.
8-9
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generated vortices depend on the beam separation dist
amplitude ratio, and phase difference. For each phase di
ence a critical value of the beam separation exists. In the
of plus-plus vortices the beams separated large distance
create three vortices simultaneously. Under the amplit
balance one dislocation is always located exactly betw
two beams. The superposition of unequal vortices gives
or four dislocations. We have found the parameter doma
for both one-three and two-four vortices generation. The v
tex trajectories were found under phase matching, and l
phase mismatch. Here the ranges of one and three vor
periodically replace each other. In addition, numerical sim
lation of parametric interaction between sum and differe
beams with the low-frequency pump wave in a quadra
medium was carried out.

Under weak diffraction and wide pump beam, the sim
lation data are in a good agreement with the analytical s
tion, obtained for uniform coupling. Only in a special dege
erate case, the dynamics of generated vortices is q
sensitive to even minor changes in the phases of interac
waves. We have demonstrated that this phase mismatch
Zh
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pears due to the diffraction effects, and estimated the indu
wave number mismatch.

We conclude by noticing the interest of the extension
the results presented here to the simultaneous frequency
version and shaping of beams using optical vortices@21–23#,
to the case of multiple noncoaxial beams, such as those
pearing in vortex streets@24#, whose signature was observe
recently in second-harmonic generation in the presence
significant Poynting-vector walk-off@25#, and to the super-
position of light beams with more general shapes, lig
Bessel beams@26#.
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