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Superposition of noncoaxial vortices in parametric wave mixing
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In this paper we present a comprehensive study of the dynamics of screw phase dislocations under condi-
tions of noncoaxial parametric three-wave mixing in the pump low-depletion regime. Under such conditions
the signal and idler fields couple and so, the fields’ properties change through propagation in the nonlinear
crystal. We present an analytical model and a comprehensive study of the vortical features of the resulting field.
The model is compared with the numerical solutions of the full equations. It is shown that by changing the
relative amplitude and phase of the initial fields, one can control the domains where creation and annihilation
of vortex-antivortex twins lead to different vortex content. We show that the effects studied here are relevant
to a variety of physical systems. In particular, we show that the same phenomena are expected to occur in
gyrotropic media and photonic crystals.
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I. INTRODUCTION In this paper we investigate the features of the interaction
of noncoaxial waves propagating in a weakly nonlinear qua-
Since screw dislocations were first discussed in generaratic crystal. This problem belongs to the broad topic of
wave fronts[1], the study of these structures has grown to“interaction of coupled waves,” and thus the results found
become a field of its own: singular opti¢2—6]. Optical here are expected to be relevant to a variety of other media.
screw dislocations, also called optical vortices, are singulariFor example, the coupling of the waves may be originated
ties in the wave front of an optical field, where the amplitudedue to parametric three-wave interaction, gyrotropy between
vanishes and the phase twists around the singularity takingrthogonal components of an electric field in dielectrics or of
all possible values. The number of twists of the phasea magnetic field in ferrites, or as a result of a Bragg reso-
modulo 27 is called the topological charge of the vortex, nance in periodically inhomogeneous media as in, for ex-
which can be either positive or negative depending on thample, photonic crystals. In all such cases, the waves are
direction of the twist. Vortices appear spontaneously in seveoupled and thus follow equations similar to those studied
eral settings, and otherwise they can be generated with phagere.
masks[7,8], or with astigmatic optical componenis]. As already mentioned for the three-wave mixing case, in
In this context, parametric mixing of multiple waves con- the presence of coupling the waves interchange power and
taining wave front dislocations in quadratic nonlinear mediaphase, and as a result, each wave consists of the sum of its
constitutes a fascinating scenario. Because of the parametrigiginal vortex and the one transferred from other compo-
interaction, the waves exchange not only energy with eachent. Their superposition generates dislocations with differ-
other but also nonlinear phase shifts, hence wave fronts. Thent charges, symmetries, and locations. In this paper we
dislocations can be transformed from one frequency to anpresent a detailed analytical and numerical study of such
other. In particular, they can be converted to the second hasuperposition, and discuss the different existing possibilities
monic [10—14 and to the sum frequency way&5]. In all  to control the output light pattern.
cases studied to date, the pump beams contained coaxial vor- The remaining of the paper is organized as follows. In
tices. Thus, the investigation of the superposition of noncoSec. Il we present the equations and geometries we are going
axial vortices in parametrically coupled waves remains opento use in our study. We also show explicitly the similarities
Actually, even the linear superposition of coaxia6] and  between the case of three-wave mixing and gyrotropic media
noncoaxial[17] vortical fields exhibits much richer proper- or photonic crystals. In Sec. Il we provide a solution of the
ties than one may naively expect. The important result irequations and show that it takes the shape of a superposition
both cases is that superposition of the singular beams casf noncoaxial beams. In Sec. IV we perform a comprehen-
generate additional vortices relative to the vortex content ogive study of such solution from a general point of view. We
the initial fields. The relative amplitude and phase differencemainly consider here the superposition of initially equally
and the axes separation, was found to dictate the number artlargedplus-plus single vortices separated from each other,
position of new dislocations. but also present some results for the case of oppositely
charged(plus-minug singularities. In the plus-plus case one-
three singularities settle at a circle, the radius and the center
*Electronic address: aps@nls.phys.msu.su of which depend on the phases and the amplitudes of both
"Electronic address: molina@tsc.upc.es initial vortices. Plus-minus superposition gives hyperbolas
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for two-four vortices disposition. Finally, in Sec. V we use where

all the acquired knowledge to understand the evolution of . e (x4 y2 1

two separated vortices and a low-frequency pump in a three- Vj=[x—x;+isgr(m,)y]Mile” [x—)"+yIwj = (g)
Wa\f{ﬁ |n(tj§r?ct|on. ’?‘S amplltutgies arllld p:hases ¥ary depen%wggj is the coordinate of zero field singularityy is the vortex
on the distance ot propagation, al stages of Superposi 'Ogharge,wj is the beam width, and;, ¢jo are the initial

peculiar to a linear interference of shifted dislocations ar%mplitude and phase of the fields, respectively.
consistently studied. Therefore we investigate dependencies |, ine following we consider p'arametric intéraction be-

of the number and location of generated vortices on th§ueen the vortices nested in the sum-frequeney and
propaga_ltlon dlst:_:mce. The spatlal'dynamlcs of d|SlO(':atlOlaifference_frequencyvz components in the presence of a
production and dlsa_lppearance at dlfferenqe frequency is Préighintensity, undepleted pump wave with frequeagy We
sented. The analytical theory and num_erlcal simulation ar@ayve performed direct numerical simulations of E@3—(4)
developed to study coupled vortex interplay. Both ap-with the initial conditions Eq(5) and Eq.(6).
proaches give identical results in the case of weak diffrac- The variables and parameters appearing in the model
tion. equations can be normalized as foIIovIZI;J-;1=L/(2kJ-w02),
¥in="7;EoL, Ajn=Aj/Eq, Xa=XIWq, Yo=Y/Wq, Z,=2/L,
Il. VORTEX INTERACTION IN COUPLED WAVES Ak,=AKL. HereEy andwy are the characteristic amplitude
and beam width, respectivell,is the characteristic scale of
_ _ _ _ ~ the propagation distance. Only dimensionless normalized
We consider propagation of optical beams with the carrietunits are used in the remainder of the paper, and hereafter we
frequenciesw; in lossless quadratically nonlinear media. In omit the “n” subscript in order to simplify the notation.

A. Parametric three-wave mixing

this case only the frequencies , w,, andwz=w;+ w, are All the examples presented in the paper were calculated
considered and generation of other harmonics can be néor the following parameter valuesy;=0.4, v,=0.6, y3
glected. The total electric field is expressed as =1, D,;=0.025, D,=0.017, D;=0.01, E;=1, E,=E;4
13 =0.1, w;=100, wo=w3=1, m;=0, my=ms=1. By nu-

_ N i(0t—k2) merical simulation, the intensity and phase distributions over

£ 2 ,Zl gA (x.y,z)e e c.c., @ the beam cross section were obtained as a function of the

propagation coordinate for different initial phases, ampli-
whereA; are the complex amplitudes,is the propagation tudes, and beam separation.
distancex andy are the coordinates in the transverse plane, Typical snapshots of the difference-frequency beam that is
g are the unit polarization vectors, akgdare the wave num- obtained are shown in Fig. 1. The intensity distributions are
bers. If the nonlinear interaction is weak, then the beam amgiven in the left column, where the larger intensity corre-
plitudes vary slowly, and their evolution can be described bysponds to the darker regions. Therefore the vortices appear as
the set of coupled nonlinear equatidis], bright spot nested in the beam. In the right column we show
the corresponding interferograms of the beams with a tilted
plane wave, where the vortices appear as a characteristic
fork. When the fork tines point downwards, we consider the
vortex to carry a positive topological charge, thus when the
5 . fork points upwards the vortex carries a negative topological
EHDZALAz: —iy,AzAT 8K, (3) charge. One observes in the plot that, because of the para-
metric generation, either one or three vortices appear in the
beam, as the propagation distance increases. We note that all
a—A?’JriDg,ALA3= —iysAA e 18K (4) the vortices move along a circle, whose diameter is equal to
Jz ’ the separation between the beam centers. We elaborate more
on this property below, and present an illustration in Fig. 2.
where D;=(2k;)~* is the diffraction coefficient, ;  This case corresponds to a representative, but particular out-
=2me, yPe,e;0;/(cn;) is the nonlinear coefficieny® is  come of the wave evolution.
the quadratic nonlinear susceptibility tensiy,is the linear To perform a comprehensive analysis of the general vor-
refractive coefficient, and is the speed of lightAk=k;  tex evolution under conditions of undepleted pump, one of
+k,—k; is the wave vector mismatch. Equationi2)—(4) our main goals here is to elaborate an approximate analytical
can also describe type Il second-harmonic generdfbiG),  theory of the evolution of coupled vortices under approxi-
if w;=w,=w is the fundamental frequen€F), A, andA,  mate, but general simplifications of Eq®)—(4). First, we
are the amplitudes of the ordinary and extraordinary polarneglect the effect of diffraction for wide beams.
ized FF components, respectively, aiglis the amplitude of Second, we note that in the limit of ideal plane waves, if
extraordinary second harmonic component. at the medium boundary the pump amplituéle is much
Let us now consider the evolution of Gaussian beamdarger than the amplitudes of the other waves, ik,
with nested vortices which are incident on the boundary o&E, 3, then this amplitude relation is preserved at arbitrary

dA :
— DA A= —iyiAsA e, @)

the nonlinear crystal, distances in the nonlinear medium as follows from the
_ Manley-Rowe relationg19]. For finite, unfocused beams the
AJ-(x,y,O)zEJ-VJ-(x,y)e'*"iO (5) same conclusion holds in integral forfie., for the powers
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FIG. 2. Location of points in the transverse plane where vortices
appear due to superposition of input plus-pl{as and plus-minus
(b) screw dislocations for different values of phase differepce
The circles(a) correspond top=7/2 (solid curve, w/4 (dash-
dotted curvg and 0.45(dashed curve The hyperbolegb) are to
¢==*0.045 (solid curve, +0.45 (dashed curve and 7/2 (dash-
FIG. 1. The intensity distributiofleft) and interferograngright) dotted curve
of the difference-frequency beam are shown at different values of
under parametric interaction between nonaxial beams nested Witrtl]eglected, so that; =1 andA,=A,(x,y,0)=const. In par-

equally charged< 1) dislocations. The snapshots were obtained by . .
numerical simulation fok,—0.7, andg;o—0. They show the main ticular, the analytical theory enables us to construct the do-

stages of coupled vortices dynamiisom top to bottom as the mains for_one-three and tvv_o-four vqrtices in the param_etric
propagation distance increasé®w 1) the input beam(row 2) plane deflned by the amplitude ratio and _the phase differ-
buildup of two new dislocationgrow 3) three symmetric singulari- €nce. We will also present later a comparison between our
ties, (row 4) vortex-pair collision, androw 5) vortex switching to ~ analytical model and the actual numerical results.

specular position. The detailed evolution of the vortex coordinates
is shown in Fig. ).

B. Vortices in gyrotropic media and spatial uniform coupling

carried by each wayeTherefore, in this case the self-action ~ We note that Eqs(3) and(4) can also describe propaga-
of pump wave is weak and the effect of the nonlinear term irtion of wave beams in photonic crystals, and gyrotropic me-
Eq. (2) can be neglected, that is, we can perform analyticatlia. In this case the amplitudés, and A3 correspond to the
analysis using the undepleted pump approximation. Thergomponents of the monochromatic wave,E wz;= ),
interaction of vortices is described by the coupled equationsy,A} = y;A; =y is the spatially homogeneous coupling co-
(3) and(4), where parametrical coupling depends on the amefficient, Ak=0, andD,=D3;=D. Therefore, many of the
plitude of the pump wavé;(x,y,z). effects predicted for parametrically coupled vortices in field
In order to reveal the features appearing due to the supeof intense low-frequency pump with the plane-wave trans-
position of vortices in the sum-frequencywf) and verse profile can also be observed with vortex excitations in
difference-frequency ¢,) waves, we consider the pump magneto-optic and periodically inhomogeneous media.
beam without dislocationsn;=0. To obtain analytical re- Recall that the normal waves in gyrotropic media may
sults, we also assume that the beam width is large so that theve left or right circular polarizatiorf20]. These waves can
variations of the transverse profile in the pump wave can bée represented as a superposition of two linearly polarized
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components with the relative phase shift2 or —7/2, re-  perposition of vortices. This kind of field was studied in a

spectively, i.e., we have previous work[17], and it was found that the topological
. content of the field may change depending on the relative
AT=AxA;. (7)  amplitude and separation distance of the overlapping fields.

SIn the case of parametrical coupling the ratio of the generated
and host beam amplitude8,, varies along the propagation
distance, and then we expect a rich topological dynamics to
outlined in the beginning of this subsection, and finally Ob_%ccu_r. In order to dete_rmlne the positions (-)f new vo_rtex_d|s—
tain the following equations: ' locations, we should find zeros of the amplitude pr0f|le_g|ven
’ by Eq. (10). Then, we conclude that the vortex coordinates
AL satisfy the following transcendental equation
W‘FiDALAi::iyAt. (8)

In order to derive the governing equation for the amplitude
of the normal modes, we substitute E@) into Egs.(3) and

Va(X—X0,Y) + Bc(2)V3(X+X0,y) =0, (11)

Since Eqgs(8) for the two normal mode amplitudes are not \yhere B.=Be'¢ is a complex value of amplitude ratio.
coupled, the corresponding solutions can be found indeperEquation(10) gives

dently, and then according to E(f) solution in the original

variables isA,= (A" +A7)/2 andA;= (A" —A7)/2. We see —iy,E1Ezexpigg)sin(l'z)
that in a gyrotropic medium vortex transforms from one lin- BC:FEz[cos(Fz)—i(Ak/2F)sin(Fz)] ’
early polarized component to the other one with orthogonal

polarization, and vice versa. Therefore, one can observe dywherepy= @30~ @10~ ©50 IS the initial phase difference. We
namical transformation of vortices along the propagation di-assume, with no lack of generality, thaf= —x3=x,>0,

(12

rection. since the pump wave does not contain a vortex.
IIl. ANALYTICAL SOLUTION IN THE WEAK IV. GENERIC SUPERPOSITION OF NONCOAXIAL
DIFFRACTION LIMIT COHERENT VORTICES

We start with the investigation of the beam dynamics for In this section, we discuss the general properties of vorti-
propagation distances smaller than the diffraction lengths ofes, which appear due to superposition of two noncoaxial
all the interacting Waves,jzkjwjzlz, i.e., forD;z<1. Then, Gaussian beams. We consider two cases, when the beams
the model equation&3) and(4) can be further simplified by have their own dislocations with either equal or opposite

removing the diffraction terms, and we finally obtain topological charges. First, the general E(.and (11) are
used to find analytical expressions for the vortex coordinates.
dA; : % iAkz It is clear that the number of solutions of these equations
oz ! Y2AAIL defines the number of generated vortices. Moreover, employ-
(9) ing Eq._(6), we establish a simple _rule f_or det_ermining the
A ] CiAke topological charges of the appearing dislocations. We plot
oz —1y3AA e : domains in the parameter space amplitude versus phase dif-

ference, corresponding to different numbers of dislocations,

We find that Eqs(9) with the boundary conditiongs) have  for various separations between the centers of input beams.
exact analytical solutions for the amplitude of the difference-Then, we consider examples of vortex dynamics as the am-

frequency wave, plitudes and phases of superimposed beams changes due to
wave mixing.
AkAg+2y,A30ATg i
= i Qi iAkz/2
Ay=| Agodl'z) i 2T sin(l'z) |e ) A. Number of generated vortices, their positions,

(10 and topological charges

First of all we consider the case of single charge, equal
vortices at the inputm,=ms;=1. Then, we substitute the
amplitude profiles given by Ed6) into Eq.(11), and derive

duced the Spat'f.il parametric beapng Iengyl_ the following algebraic equation for the coordinates of vor-
The expression for the amplitude profile of the SUM-\ .+ centers:

frequency wave can be obtained by exchanging the indices

Here Ajo=A;(x,y,0) is the input amplitude profiltsee Eq.
(5)], T'=[y,ysEi+(AKk/2)?]*?==/L,, where we intro-

23, and inverting signs in front ahk, and removing the (X—Xg+iy)e®o+ B.(x+Xxo+iy)e 2%=0. (13
conjugation mark of pump wave amplitude A%,— A4 in
Eq. (10). Separating the real and imaginary parts in EtB), we

According to Eq.(6), both A, and A; contain vortices at  obtain
the input face of the crystal. Due to the parametric wave

mixing taking place inside the nonlinear medium, these vor- X COShG+XxC0Sp=xesiNhG,  G=4xx—InB, (14)
tices penetrate to other components as it follows from Eq. ) T
(10). The field in both components is found as a linear su- X+ (y—XgCote)“=Xgsin™ “¢. (15
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FIG. 3. Domains of three vortices generated by coupled plus: B coso
plus screw dislocations for the original displacemeqts 0.5 (dark
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Note that Eqs(14) and (15) are simplified tox= xytanhG, 0s @ 1op
x2+y?=x2 for cose=0, x=xtanhG/2), y=0 for cose  ,.oof " "77 > ost T
=1, and x=xqcoth(G/2), y=0 for cosp=—1. Equation Xl ™ aofumzzennt I T
(15), in particular, proves at once thatcoordinates of aris- ;Z osf
ing vortices are limited by valuey/ [sin <p|_. According to Eq.  _, e B R s
(15), the dislocations appear on a circle with the radius ° ' *¢ * * ° eos g

Xo/|sing|, and with the center in a point ¢Qcote), as
shown in Fig. 2. The circle always passes through initial
points (Xg,0) and (—Xxg,0). In thecase ofw/2, the circle
center is located at the origin, see the solid curve in FHig. 2 . ;

The corresponding dynamical transformations of vortices ar«@iI lis'(gl)usa:;ericgo(g') Tr i ?:)rain ?ft)e rTQf:_?O'tlsg ;‘1’ ;b?'a?n(s()j’ b
shown in Fig. 1. The circle moves upwards, and the radiu%nalytiéal soIﬁtTon of izqé(le) ,and(ll7) P y
becomes larger ap increases. It degenerates to straight lines ' '

y=0 andy—c when cogp=—1. and lays in the straight ling=1. Only one positive vortex

b Thus the genﬁrate?_r:/omces are plact?]d on thefcwclg at t%ists outside the domain. In the domain topological charges
eam Cross section. There aré one or thrée€ VOrtices 0epengy i ae yortices alternate as plus, minus, and plus. Interest-

ing on the beam distanocg), the amplitude ratig8, and the in . . -
, . gly, the vortex characteristics witl are the same as with
phase difference>. We can find the boundary of the three- 1/ when a phase difference is fixed.

vortex domain in the following way. Such domain is placed
between the vertical tangents to the curex(B). To de-
termine their positions, it needs differentiating E&4) with
respect tax. The obtained expression must be solved jointly
with Egs. (14). Having fulfilled such procedure and carried Let us now consider representative examples of vortex
out simple algebraic transformation, we find the following superposition while the amplitude ratio changes, see Fig. 4
equations for curves that define the three-vortex domains: (left column. The two limiting cases, whe approaches
zero and wherB goes to infinity, correspond to the cases
4X§—4Xbxo+ 1) 12 16 when only one of the two overlapping fields is present in the

FIG. 4. Vortex coordinates (solid curve$, y (dashed curvesas
a function of the amplitude rati@ for x,=0.45 (left column and
of the phase difference for x0=1/\/§ (right column in case of

B. Dependence of vortex positions on the amplitude-phase
relations

total field. One expects in those cases only one vortex to be
present in the field, and its location should be that of the
corresponding beam, eitheky,0) or (—Xq,0). As an ex-

Bu= eXF(4Xon)(

AX2+ 4xpXo+1

4X(2)_4Xt2)_1 an ample we have chosen beams separated on the distgnce
COSpp= . =0.45 at which the extreme point of the domain is
P L1+ 40 - 1603512 o ™ xireme pol nis ges

We start our analysis with the critical cage= ¢.,. Here,
as mentioned above, only a single vortex exist for the whole
range of amplitudes, but its position changes while changing
the relative amplitudes. It is in this range that the singulari-
5 ties switched from initial positionx;,0) to opposite point
COSpex=4X5—1 (18 (—x,,0) under the monotonic amplitude ratio increase, as

The three-vortex domains constructed by E@{$6) and
(17) are shown in Fig. 3 for different beam separatiqn
The domain has the extreme point of a cusp type at
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shown in Fig. 4a). The vortex moves on a circular arc, and

the maximum remoteness alongaxis is y,,=Xqtan(¢/2)

=1.21x,=0.545 atx=0. 3.0
When the relative phase is such that its cosine is less than

35

the extreme value cas<cosg,,, three vortices can arise. 25
We consider more particularly the case of ges—0.9, see ool
Fig. 4(b). The three-vortex region begins &@,,=1/3, o
=0.23 and ends g8, = B,=4.25. 1.5
The initial vortex is displaced away from the origin along 10k

both axes while increasing the relative amplitude. It reaches
the farthest position,;; = 1.03 atB3,,=4.25. A vortex twin is 05
created at the point,,,= — X1 When 8= B,,. The positive
vortex of the twin moves towards the position-Xg,0)
which corresponds with the center of one of the original

0.0 . "
0.86 088 090 092 094 09 098 1.00

. . . . CcoSs

fields, V3. Its negative counterpart moves to collide with the ¢

initial vortex. They annihilate each other At= By, leaving FIG. 5. Domains of four vortices generated by plus-minus screw
only a single vortex in the field. One can see that the wholgjisiocations for the original displacements=0.9 (dark gray fill-

process is symmetric when one changeto 1/8. ing), 1.0 (gray filling).
The case cog=—1 is degenerate. Here, only two posi-
tive vortices appear for the whole range gf but at the The extreme points of the domain are located in
boundary point§8=0 and —o where, as only one field
contributes to the sum, only one vortex is present. The new COS(pex=(4X(2)— 1)1’2/(2x§), (21
positive vortex enters in the total field from afar. The nega-
tive vortex goes to infinity alony axis. A representative and if the beam separation is less than the critical valye
example is shown in Fig.(4). =1/\/2, the four-vortex domains disappear. Within such do-
We have also studied how the vortex positions changenains the topological charge alternates as plus, minus, plus,
with relative phase variations, when the amplitude is fixedminus from one vortex to another.
In Figs. 4d—f) we present some representative cases, where The equations which govern the position of the vortices
the separation distance is fixed xg=1/y2, which is the are
critical distance, thus regions with three vortices will appear

at any amplitude ratio. As can be seen from Fig. 3, wjen XoC0ShG + Xocosp=XxsinhG, G=4xx,—InB, (22
=1 the three vortices region covers the whole phase domain,
as shown in Fig. &). The larger the departure of the ampli- y2+2xy cot<p—x2+x§=0 (23

tude from unity, the smaller is the three vortices region.

Investigation of beam separation influence on plus-plusand some representative cases are shown in Fig. 6.
vortex superposition was performed theoretically and experi- We emphasize that one of two positive vortices goeg to
mentally in Ref[17]. Thus we omit such discussion. infinity when cosp=1, see Figs. @€,€). In that case Eq%22)

and(23) becomex=XxytanhG/2), y=0 for remaining vorti-
C. Superposition of vortices with opposite topological charges  C€s.

Similar features appear for superpositions of vortices with
different charges, although the actual dynamics and number V- SPATIAL DYNAMICAL EVOLUTION OF COUPLED
of vortices change from case to case. Because of this, we VORTICES
have also studied the superposition where the vortices of the In this section we focus on the case of equal vortices and

overlapping fields have opposite chargesi=1ms=—1.  heir propagation in nonlinear quadratic media. We analyze

In this case only two or four vortices can appear. In Fig. 5 W&o gynamics of the vortices in the difference-frequency
present the domains in the parameter space where four VoébmponentAz, when the initial fieldsA, and A, contain

tices appear. Or_1ly two vorti_ces can b_e found outside thQ/ortices of the same sigm,=mz;=1. We will use the ana-
domains. Analytical expressions for this case can also bﬁltical results obtained in Sec. Il in two distinct caseés:

Loundd andl; ftor exatrt?plg, thg parametric equations for th%xact phase matchingk=0 and(ii) large phase mismatch
oundary between the domains are |Ak|>T . The first case also corresponds to vortex excita-
2 1/2 tions in gyrotropic mediunisee Sec. Il B
AXg—4xXpXo— 1 ; -
0 v - (19 In our analytical development, we have neglected the ef
fect of beam diffraction. In order to determine the evolution
under weak diffraction, and its influence on our results, we

have performed direct numerical simulations of E@3.and

Bo=exp(4XpXo)

A3+ 4x,Xo— 1

4x2—4x§— 1 (4) with the boundary conditions E¢) and Eq.(6). A com-
COSp,= 2 5 PNNETL (20 parison between analytical and numerical simulation results
[(1+4x5)°—16xpX5)] is given below.
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. Z ) FIG. 7. Dependence of difference-frequency vortex coordirate
. ? on the propagation distaneainder phase matching. The parametric
>.-°'5' superposition occurs between two beams with=1, and(a) xq
OO e T =0.45, ¢=0; (b) Xo=0.7, ¢,=0; () Xo=0.45, po=— m/3; and
R S (d) Xo=0.45, o= — 7/2. Solid line is the result of numerical simu-
15 . . , e =< lation, dashed line is the analytical solution of E¢sd) and (24).
o 0 1 2 3 4 _1'8.90 092 094 096 098 1.00
B cos ¢

is formed, see Fig.(d) where we have used,=0.45. In this
FIG. 6. Vortex coordinates (solid curvey, y (dashed curves's  case, the vortex goes fromxd,0) to (—xq,0) passing
the amplitude ratigd (left column), and the phase differen¢gght through the point (0,0), whergg=1, at the lengthz,

column for supercritical initial separatioxo=1 of plus-minus  _ -1, —1 _ . e
screw dislocations. The parameter ges0.866(a), 0.98(b), 1 (c), I’ “tan*(1/5m) O'ZE‘F’ and reaches opposite sielg

andB=1 (d), 2.5(®), 3 (). The plots are obtained by analytical _ 0-4° at the distance,=0.5.,,, where the energies of the

solution of Eq.(22). A, andA_s beams are exchanged. After this cycle.the similar
process is repeated in contrary transverse direction. The nu-
A. Vortex mixing at phase matching merical simulations are in good agreement with the result of

According to the analytical solutiofil2) obtained in the our analytical model.

nondiffraction limit [model Egs.(9)], the phase difference When the be'am separation is larger than the critical dis-
between the second and third components does not change!f#'ce three vortices can be generated. In Fig) e show a
the case of phase matchink=0, and remains the same as YPical example forg,=0 andx=0.7>0.5. We observe
at the input. Then, using E¢12) we can obtain simplified that, besides the original vortex, a new twin of vortices is
expressions of the amplitude ratio and phase difference fofreated at about,;=0.2L,. One of them collides with the
the generated and host beams, original vortex, annihilating each other atz,,
. =T cot {(Bu/By)=0.38L,. The remaining positive

B=Bmltan(I'oz)|, cose=sgritanToz)]singo, (24  charged vortex moves towards the position xp,0). It

where B,,= (v2/v3) “%E3/E,. As will be shown explicitly reaches that position when the exchange of energy is com-

for the case of phase mismatched waves, these kind of equgl-ﬁte' Aftgr _that pom': thefp(;_ocess n F'_g' |7 _rep(-I:‘at_s itself.
tions define a curve in the phase spdg@cos@)]. The Characteristic examples of direct numerical simulations are

crossings of this curve with the boundaries of the domains iPrésented in Fig. 1. These plots demonstrate that the ampli-
Fig. 3 are the points where creation or annihilation of vorti-{Ude and phase profiles can be used to determine the vortex

ces occur. From Eq(24) it is seen that the host amplitude POsitions, and determine the topological charges of disloca-
vanishes at half the beating length=m/(2Iy). Note that tions. Results of such numerical calculations are plotted with
B goes through all possible values while changing the propasolid curves in Fig. 7.

gation distance inside the crystal. According to E2¢) the ~ The dynamics of the vortices is modified if we use other
phase difference jumps by occur because of changing sign initial phase mismatches. For instance, introducipg=
of tan('yz2). — /3, and hence cag(0)=—0.5 the symmetric trajectory

We first study parametric mixing of dislocations when of parametric vortex is distorted as it is shown in Figc)7
¢o=0 , so that cog(0)=0, see Eq.24). In this case the the asymmetry results from the phase difference jumprby
vortices are situated at the circié+ y2=xg, Eq. (14). If atz=/(2I')=0.5_, according to Eq(24). Here we have
original vortices are less than a critical distance apart, whiclkept all the other parameters used for the simulation identical
IS X¢r = 1/4/2 for this particular case, only a single dislocation to those in Fig. 0.
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B. Effects of weak diffraction 1o — 1-0/—\
There is a large change in the pattern when we se osf @ 05 (b)
cosg(0)=—1, see Fig. @). If we tune the initial phase tobe > ,[ % ool
¢o=— /2 we expect to achieve the desired conditions. In-
deed, initially we see only two trajectories, which correspond [ Q 05
to two branches in Fig.(4¢). However, at a larger distance, g R S
z=0.4L,, the third vortex appears in between the first two. " Akzi2m " Akz/2=m

This happens due to trdffraction-induced phase mismatch
Let us study these effects in more detail. The parameters of 1 1

wave beam are modified as a result of diffraction. In the 0_’_\_(:)’ ol @
linear diffraction regime, the beam width increase is propor- _1 4
tional to the factorf=(1+2z%L3)"? the phase front be- N f ,‘
comes curved, where the curvature radiuRRisz+ Lﬁj/z, * N
and the phase shift is accumulated at the beam axis, 3 N
:Corl(Z/LdJ’)' At small propagation diStanceszdj’ the %00 o0z 04 o8 08 10 %0 0z o0& 06 o8 10
additional phase, which is accumulated due to diffraction, is Akz/2x Akz/2m
proportional to the distance, i.epq=2/L4j. Such a linear
increase of phase corresponds to an effective increase of tt osf
beam phase velocity, and the decrease of the wave numb e (e) osl ®
by 04} x '
x 0.0}
Akgj=—1/Lg;=—4D;/w’. (25 02} vl

The three-wave interaction is primarily influenced by the oo SN | S

. . . . 00 02 04 06 08 1.0 00 02 04 06 08 1.0
presence of the diffraction-induced wave number mismatch, Akz/2x® Akz/2x
Aky=Akys+Akgo—Akys, which can be presented, using
Eq. (25), in the following form:

FIG. 8. Dependence of difference-frequency vortex coordirate
on the normalized propagation distankkz/27— whenxy=0.7. Up-
Akd=4(D3/W§— D2/W§—D1/Wf). (26) per row, ¢o=1; middle row, Po= —m/2, and bottom row,¢q
=0. Left column,B,,=1 and right columnB,,,=2. Other pa-
Small variations of beam width and the curvature of the'@meters are given in the beginning of Sec. V.
phase front can be neglected, provided that the condiion . .
<Lyg; is satisfied. Then, the leading order correction to thevhere Bmm=(272E1/|AK[)(Es/Ep) is the maximum
wave number mismatch is given by E@6). achievable amplitude ratio along the_: propagation distance
For the case of Fig. (@), the diffraction-induced mis- It follows from Eq.(27) fthat the relatlve amplitude between_
match isAkg=—0.11L,. As we have already mentioned, the supenr_nposed vortlces .oscnlates along the propagatlon
the case with cog=—1 is a degenerate one, and even suchistance with the spatial peridg,=27/|Ak|, and phase dif-
a small perturbation will change the expected two-vortex ref€rence experiences the jump by in each spatial period.
gime. Instead, we have the usual one- and three-vortex do>trong penetration of the guest beam is observeghif, is

mains. The vortex with negative sign appears in the simulal2rge, and this regime can be realized by increasing the am-
tion window atz=0.4L,, and annihilates with the original plitude of the third waveE;. We note, however, that these

vortex atz=0.5_ . . results are obtained in the frames of the undepleted pump
Note that, if initial dislocations are not in phase, they@PProximation, which is valid if the conditioBi;<E, is sat-

move in a spiral, which is projected in a circle at beam crosssfied. ) -
section according to Eq15). In order to determine the positions of the generated vor-

tices, we substitute Eq27) into the general expression Eq.
(14), and obtain the following relation between the vortex

coordinates< and the propagation distanze
Under the presence of a phase mismatch between the

C. Vortex mixing under phase mismatch

parametrically coupled wavedk# 0), the phase difference (X—Xo)EXP(4XXo)
between the superimposed vortieevaries along the propa- tan(Akz/2)= - 7 o1 (28
gation distance as follows from E¢l2). Then, the spatial = BmmXSiN@g*[ BmmXo— F<]
dynamics of vortices becomes more complicated compared
to the case of exact phase matching considered earlier in Sec. F=(Xo—X)exp &Xo+ BmmX COS@y.
V A. If the phase mismatch is largeAk|>T, then Eq.(12) . _ _
can be simplified and we obtain the relations In Fig. 8 we present the analytical calculations of the
vortex coordinates while the propagation distance increases.
B(2)= BmnlsiN(AkZ/2)|, (27 If o= (upper row a single vortex appears in the first
steps of propagation. This host vortex moves away from the
coS¢(z)=sgr sin(Akz/ 2)]sin( ¢q+ Akz/2), central region to the beam periphery. At larger propagation
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distance the phase differenge continues to increase, and 4
three singularities appear. Then, the process goes in the re-
verse direction. If the coefficiem8,,, is increased, the three-
dislocation domain becomes larger along #taxis, compare
Fig. 8(b) with Fig. 8a). d
We now consider an interesting casgy=— w/2 when 2 P
¢(0)= = and the appropriate examples are presented in the
middle row of Fig. 8. Near an input three vortices are ex- c
cited: one in the central region, and two more at the beam
periphery. Under amplitude balance condit@n,= 1, these
two vortices move towards the central region, then merge 0 . a e,
and disappear, see Fig(c® However, if B,y is large, the -1.0 05 0.0 0.5 1.0
middle vortex moves towards the host one, and they fuse and Cos ¢
disappear, as shown in Fig(d.
The out-of-phase beamg§=0) can excite one or three

FIG. 9. Vortex trajectories in the parameter plaggdose) un-

. . . . der phase-mismatched interaction of equally charged vortices
dislocations, see bottom row in Fig. 8. At amplitude balance, .. in noncoaxial beams with the separatign 0.7. The mo-

Bmm=1 one vortex appears, see FideB It is attracted to- tion along the lines(a—f) corresponds to the changes of vortex
wards the beam which penetrates from the sum-frequency,, ginates shown in Figs(@—8(f). Three vortices appear when

component. However, iBmn is large, then three vortices can the parametric trajectory enters the gray shaded region, which was
be excited, Fig. §). In two last cases vortex reaches extremegarlier shown in Fig. 3.

position at the distance=L,/2, and then returns to the

original position. ries in Fig. 9 always cross the three-vortex domain. The
larger the amplitude ratig,,,,, the longer is the distance
D. Vortex trajectories on the amplitude versus phase where three vortices exist, cf. the cagsesand(d). To sum-
parameter plane marize, the trajectories plotted on a parametric plane in Fig.

The coordinates of generated vortices change in the prcf3 enable us to quickly reveal the qualitative dynamics of

cess of wave mixing, due to the changes of amplitudes ané1 ree-wave vort_ex generation. .
. ’ . . The trajectories defined by E(R9) can be superimposed
phases during the beam propagation, as we have illustrated

in Sec. V C. If one want to determine just the number ofl a similar way over the four-vortex domains, shown in Fig.

generated vortices, then this can be predicted more easily, k%s for the case of oppositely charged input beams. In this case

analyzing the result of wave mixing in the parameter planeMe number of vortices will change from two to fotar the
(B,cos¢). We have demonstrated earlier that these paramc-)ther way arouny as the domain border is crossed.
eters uniquely determine the number of vortices, for a fixed

distance between the input beams, as illustrated in Fig. 8. VI. CONCLUSIONS
However, Eqs(27) give the following relation between these

: . . We have reported a detailed study of the mixing of non-
parameters for three-wave interaction under phase mlsmatcgb P y 9

axial vortices in parametric wave coupling. Our results are

ng applicable to the cases (i) three-wave parametric interac-
B cose 5 112 tions in quadratic medidji) coupling of orthogonally polar-
cos<p=B—0+sgr[sin(Akz)]singoo 1-—| | ized components in the gyrotropic media, afiil) wave
mm B propagation in photonic crystals under Bragg-resonance con-

(290  ditions. In all such cases, each wave carries its own vortex

and the one that is transferred from the other components.

which describes a line in Fig. 3. If such a line crosses theThe noncoaxial superposition of the singularities gives rise

shaded domain, three dislocations are generated at some dis-the appearance of new dislocations with different charges,
tances. symmetries, and spatial positions.

Let us illustrate the results for the beam separation param- We have performed extensive numerical simulations tak-
eter xo=0.7. In Fig. 9, we plot the corresponding three-ing into account all the key factors, which govern the inter-
soliton domain from Fig. 3, and also draw characteristic tra-action of wave beams. Several example illustrate amplitude
jectories defined by Ed29). These curves correspond to the and phase distributions in the beam cross sections, which
different values of mismatches, which we choose to be thevere used to determine coordinates and charges of the gen-
same as in Figs.(8—f). Full coincidence between the full erated vortices, under different conditions. However, for uni-
and simplified descriptions is evident. For example, the traform coupling and negligible diffraction, we have developed
jectory (e) for ¢o=0 does not cross the three-vortex domainan analytical description. The corresponding solution was ap-
in Fig. 9, and we see only one vortex generation in Fig).8 plied to analyze vortex generation by the separated beams,
If an energy exchange is increased ugBip,,=2, the corre- containing screw phase dislocations with plus-plus and plus-
sponding trajectory(f) crosses this domain, and there areminus topological charges. The equations for the generated
regions of three-vortex generation in Figf)8 If the initial  vortex coordinates have been obtained.
phase difference becomes equaltar/2, then the trajecto- It has been shown how the number and coordinates of the
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generated vortices depend on the beam separation distan@®ars due to the diffraction effects, and estimated the induced
amplitude ratio, and phase difference. For each phase diffewave number mismatch.

ence a critical value of the beam separation exists. In the case We conclude by noticing the interest of the extension of
of plus-plus vortices the beams separated large distances ctre results presented here to the simultaneous frequency con-
create three vortices simultaneously. Under the amplitudeersion and shaping of beams using optical vort[@ds-23,
balance one dislocation is always located exactly betweeto the case of multiple noncoaxial beams, such as those ap-
two beams. The superposition of unequal vortices gives twpearing in vortex stree{24], whose signature was observed
or four dislocations. We have found the parameter domainsecently in second-harmonic generation in the presence of
for both one-three and two-four vortices generation. The vorsignificant Poynting-vector walk-off25], and to the super-

tex trajectories were found under phase matching, and largeosition of light beams with more general shapes, light
phase mismatch. Here the ranges of one and three vortic&essel beamg26].

periodically replace each other. In addition, numerical simu-

lation of parametric interaction between sum _and differen(_:e ACKNOWLEDGMENTS
beams with the low-frequency pump wave in a quadratic
medium was carried out. Authors A.P.S. and A.A.K. acknowledge support from the

Under weak diffraction and wide pump beam, the simu-Russian Foundation for Basic Research under Projects 02-
lation data are in a good agreement with the analytical solu92-17127, 02-02-06531, 02-02-81029, and from the Federal
tion, obtained for uniform coupling. Only in a special degen-Program “Support for Leading Scientific Schools” under
erate case, the dynamics of generated vortices is quitBroject 00-15-96561. Authors G.M.T. and L.T. were sup-
sensitive to even minor changes in the phases of interactioported by the Generalitat de Catalunya and by the Spanish
waves. We have demonstrated that this phase mismatch a@overnment through Grant No. TIC2000-1010.

[1] J.F. Nye and M.V. Berry, Proc. R. Soc. London, Ser326, (2001).
165 (1974). [15] A. Berzanskiset al,, Opt. Commun140, 273(1997.
[2] M.S. Soskin and M.V. Vasnetsov, iArogress in Optics XL|I ~ [16] M.S. Soskinet al,, Phys. Rev. A66, 4064 (1997).
edited by E. Wolf(Elsevier, Amsterdam, 2001 [17] G. Molina-Terriza, J. Recolons, and L. Torner, Opt. L&B,
[3] Yu.S. Kivshar and E.N. Ostrovskaya, Opt. Photonics N&@/s 1135(2000. )
24 (2001)). [18] Yu.N. Karamzin and A.P. Sukhorukov, Zhk&p. Teor. Fiz68,
[4] I. Freund, Opt. Commuril59, 99 (1999. 834 (1979 [Sov. Phys. JETR1, 414 (1979)].
[5] I. Freund, Opt. Commuril81, 19 (2000. [19] Y.R. Shen,The Principles of Nonlinear OpticéNiley, New
[6] I. Freund, Opt. Lett26, 545 (2002J). York, 1989.
[7] V.Yu. Bazhenov, M.V. Vasnetsov, and M.S. Soskin, Pisma Zh.[20] J. Petykiewicz,Wave Optics(Kluwer Academic Publishers,
Eksp. Teor. Fiz52, 431(1990 [JETP Lett.52, 429(1990]. Dordrecht, 1992
[8] N.R. Heckenbergt al., Opt. Lett.17, 221 (1992. [21] G. Molina-Terrizaet al, Opt. Expres®, 110(2001).
[9] M.W. Beijersbergeret al, Opt. Commun96, 123 (1993. [22] E. Abramochkin and V. Volostnikov, Opt. Commui25, 302
[10] I.V. Basistiy et al, Opt. Commun103 422 (1993. (1996; 141, 59 (1997).
[11] K. Dholakiaet al,, Phys. Rev. A64, 3742(1996. [23] E.G. Churin, Opt. Lett24, 620(1999.
[12] J. Courtialet al, Phys. Rev. A66, 4193(1997. [24] J.T. Maloset al,, Opt. Lett.22, 1056(1997).
[13] D.V. Petrov and L. Torner, Phys. Rev.38, 7903(1998. [25] G. Molina-Terrizaet al, Opt. Lett.27, 625(2002.

[14] A. Stabinis, S. Orlov, and V. Jarutis, Opt. Commu®7, 419  [26] V. Pyragaiteet al, Opt. Commun198 459 (2001).

036608-10



